按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
心2代这大半年研发工作的一些基础推倒了,顾莫杰不会这么脑残做那种事的。
“在初心1的基础上,当时我们定下的2代主要改进方向,包括这几个方面:首先是屏显技术。根据情报,苹果公司显然是有大概率在IPHONE4上使用Retina标准的‘视网膜屏’,其像素密度会有320PPI左右,3。5英寸左右的屏幕,分辨率可以达到960*640——苹果方面没有公布过这个数据,是我们猜测的。”
冯国荣说到这里,顾莫杰立刻打断了他。
“没有情报支持么?仅仅是猜测的?那依据是什么?”
冯国荣胸有成竹地答道:“因为IPHONE…3GS上面苹果还是480*320,PPI才160多。只有等比例的用2*2的点阵替换原先的单个像素点,才能保持苹果手机触控算法的继承性。否则其他软件商此前为IOS开发的APP都会疯的!”
顾莫杰在脑子里过了一遍,确认道:“这么说,当初苹果公司在定义IOS操作系统的时候,对于触控部分的底层算法,就曾经定义过‘点’和‘像素’两个不同的变量咯?”
“当然,苹果公司在控制侧定义的点就是480*320,而显示侧的像素和触控测的点是两组相互独立的量,到IPHONE4上,估计就会2*2的像素对应一个‘点’。”
“我们当初写安卓的时候,也是这么干的吧?”顾莫杰有些紧张地追问,有些当初的历史问题他有些记不清。
冯国荣继续肯定地回答:“是的,而且安卓的系统默认控制侧‘点’,就是按照我们的‘初心1’的800*450分辨率定义的,而显示像素可以按照800*450的整数倍往上翻。所以,在未来所有安卓机领域,我们是有优势的。我们把安卓的‘可控点’定义为16:9的长宽比,而非苹果IOS的3:2,相比而言安卓的默认屏更宽屏。而其他安卓厂商要是硬件屏幕不是16:9的长宽比,在触控的时候卡顿和误差就会比我们的初心明显。如果他们在增大屏幕分辨率的时候,不做‘把像素打包成点’这一步骤,而是指望系统的自动换算算法。那么也就意味着其他安卓机在触控的时候,系统运算资源的内耗就会比我们严重。”
听了冯国荣讲的这个关节,顾莫杰心里一块石头落了地。
平行时空的IPHONE触控感觉特别流畅,不卡顿,其实和其“显示侧的像素”和“控制侧的点”之间的对应定义比较简介规整有关系的。而安卓系统因为各家屏幕长宽比和像素比参数杂乱,嵌套的算法就比较复杂,最终导致了卡顿。
而如今,安卓的输入/输出标准就是初音引导谷歌完成的,初音方面自然知道怎么规定手机的硬件分辨率和触控点最有效率。
未来的初心手机,分辨率必须是800*450的整数倍,把输入算法的内耗降低到最少。
脑子转过弯来后,顾莫杰继续追问:“那我们目前‘初心2’设计的像素密度是多少?分辨率难道也做到了2*2替换一个点?PPI有点高了吧,现有技术实现得了么?”
冯国荣耸耸肩:“没办法,只能把长宽分辨率都加倍,做到1600*900。理论上,如果我们还是用4。2寸屏不变的话,PPI会达到恐怖的437。目前哪怕使用三星、LG或者夏普的屏幕,做到这个数据都是有困难的。所以我们最终讨论的结果,是把2代机的屏幕尺寸扩大到5英寸整,比1代的4。2寸提升大约20%。这样PPI就会相应降低到367,在目前日韩最高端民用面板PPI的可接受范围内,也不至于冗余太多性能。”
乔布斯夸口定义说“300PPI的手机屏,就能达到人类视网膜无法分辨颗粒的完全拟真状态”这句话时,其实是有附带条件的。
那就是,“手机使用时,屏幕距离眼睛大约在1英尺”——这也可以理解,为什么在定义笔记本电脑的视网膜屏时,对PPI的要求会降低到200多,而定义HDTV级别的高清电视时,进一步降低到70…80(60寸的电视机,也只有1920*1080的分辨率)
因为人在使用电脑的时候,屏幕和眼睛的距离明显比手机屏幕和眼睛的距离更远。至于看电视,人就坐得更远了。距离越远,自然对PPI的饱和要求越低。
了解了这个原理之后,就可以看出,并不是手机PPI超过300就“一律超过人眼的分辨能力”。
只能说,把手机拿在眼前一尺远的位置看时,300PPI就够了。但是如果拿到距离眼睛只有20公分的地方仔细看,又或者是遇到一个视力5。3的飞行员级别的人,那么初心2代的PPI冗余显然是可以派上用场的。
至少在这个距离上,飞行员的视力可以看出IPHONE4的326PPI屏幕有颗粒感,而初心2的367PPI屏没有。
在多出来这部分性能上花的钱,并不会白花。
“那就好,初心1代已经为公司掌握了中端机的基本盘,未来2代出来,1代也不会马上停产。所以,不用害怕2代成本与售价高企,只要性能上坐实全球一流,我们相信市场是没有问题的——那么,最终我们的367PPI屏幕,用的是哪家的技术和物料?”
“三星、LG、夏普,这三家我们都尝试了,并且按照不同物料做了三套结构耦合测试。目前市面上可以做到300PPI以上IPS的大厂,除了给苹果供货的JDI(索尼/东芝联合,后来的索尼手机也是用的JDI供货),就剩这3家了。”
和众人想象的不同,苹果公司在硬件上并没有什么自己牛逼的东西,其实苹果更多时候是集成商,而屏显、LED相关的技术,最好的还是日韩厂商。
或者说美国人只是玩极简主义的,真涉及到“产品颜值高低”的技术,世界上最密集的还是日韩地区。
“目前合作模式只是直接采购?没有相关专利授权布局么?不会有将来被卡脖子的风险吧?”顾莫杰老成地提出了如此质疑。
面对这个问题,冯国荣欲言又止,还是看了一眼张拓海之后,由后者回答:
“目前都是签的战略采购。如果只是给新手机供屏的话,将来不会有任何风险。但是后面我们还在规划一些‘基于对方技术门槛研发的后续专利’,等我们公布后续专利之后,可能会遭到上位专利的限制。”
顾莫杰神色一紧:“给我说具体一点儿。”
“好的,那主要涉及到下面这项技术创新。”张拓海不卑不亢地接过了话头。
(注:Retina屏是苹果公司拥有专利技术的显示屏,包括一些标准定义层面的专利。理论上是绕不过去的。但是视网膜屏并不是只有Retina一个定义标准,其他公司基于IPS屏幕技术延展的高分辨密度屏幕,只要接近300PPI像素密度,理论上都可以叫视网膜屏。)
第一百四十九章 秒杀谁好呢
顾莫杰听初音智能的几个技术骨干回报了半晌,总算是确认了“初心2”手机在画质和颜值上绝对可以超越同样会在明年上市的IPHONE。
但是随着这一利好的确认,更多的问题和麻烦也被带了出来。
张拓海清了清嗓子,拿出一套带着屏显、测试主板和测试电源的散机,给顾莫杰演示起来。
“5英寸、367PPI屏幕这个指标,是我们今年2月份的时候就最终敲定了的——当时367PPI的屏幕,三星、LG和夏普都还没生产出来,年中的时候才给我们到货。在此之前,我们都是拿低分辨率的屏幕等效、拖过其他测试环节的。定了这个屏幕之后,连带着2代机的整机尺寸也就敲定了。有5寸的背板空间放置CPU和基带芯片、摄像头、耳麦等固定大小的元器件,结构设计显得比一代宽敞了很多。整机背后三分之二的空间都能空出来放置电池,而机体厚度反而比一代还薄了一点。但这个时候,我们又发现了一个新问题:因为视网膜屏的应用、像素计算的数据处理量猛增了数倍,GPU显存能耗也往上翻。加上屏幕本身的耗电也暴涨——屏幕以正常亮度亮着的时候,整机电流竟然有300mA,而原先1代的时候只有140mA。”
“2代机背光耗电比1代翻倍还多?太高了。”顾莫杰听了,也觉得这个参数有些严峻,“现在2代的电池是多大?”
“已经顶格做到2000mA了,如果放弃机体减薄的属性要求,电池最多可以撑到2400mA。”
2400mA,也不过是“新手机充满100%电、屏幕亮着放8小时就没电”的下场,依然躲不过“安卓好男人每天晚上都要回家充电”的宿命。
“不行!屏显能耗太高了,光靠堆电池没用。还是要治标治本,把屏显能耗降下来。”顾莫杰立刻做出了判断。
张拓海示意顾莫杰不必焦急:“这就是我要说的——这半年里,我们的团队配合陈工,一起弄了一组划时代的降低屏幕背光能耗的新技术,目前还在专利保密期内、每隔几个月撤一遍的潜水艇状态。等到2代手机发布的时候,这些专利也会进入公示期,然后在6个月的优先权期限内完成各国专利权的联合注册——只不过,我即将说到的这些技术,会受到LG、三星或者夏普的某些上位基础专利的限制。”
原来才说到戏肉呢。
“说下去。”顾莫杰并不废话。
“这个就是我们的独家发明,叫做‘LED与环境光双导光侧背光源’,绝对划时代。”张拓海说着,拿出一组旁边接着奇怪转接槽的触控屏显,放到顾莫杰面前。
“众所周知,IPS屏幕与触屏,几年前最初出现的时候,是日本日立公司的技术,用的是LCD液晶屏——LCD液晶屏的背光源,是放在屏幕背后的,往上照射,把屏幕打亮。
而近年来,LED这种新光源的光效不断崛起。08年的时候,LED的民品光效达到了70lm/W,今年进一步提升到80lm/W左右,已经追平了三基色节能灯。在照明领域,很多业内人士都说今年是LED照明技术的元年,因为其节能高效性的临界阀值已经突破了。
而在显示器背光源问题上,LED技术的成熟,也带来了两个意想不到的好处。
首先,自然是LED比传统LCD的屏需要的‘背光小灯管’更节能、光效更高。
其次,则是LED光源可以配合一种叫做‘导光板’的新面板材料进行二次配光;而传统的LCD只能靠‘扩散板’这种低档的、近似于有机塑料的东西配光。”
张拓海说着,拿出LED屏和LCD屏两种结构的样品,演示着给顾莫杰对比。
很明显可以看出,LCD屏的厚度要比LED屏厚大约2个毫米——厚就厚在那层铺在屏幕背后的光源上。而LED屏的光源,是沿着屏幕剖面、从两侧往中间照射的。
后世那些家用的电视机,LED时代的电视比LCD时代的电视更加薄,前者整机只有两三公分厚,而后者至少也要四五公分。这里面的差距,主要就是背光源与屏显的结构耦合导致的。
顾莫杰把玩了一会儿,不确定地问:“可是,看起来这个只是把机器做得更薄,对节能效果也明显么?”
“很明显,目前采用LED屏就可以比LCD屏光效提升15%左右,但是考虑到初代导光板本身的损耗比已经很成熟的LCD扩散板低一些,所以综合能耗只降低了10%。但是,我们应该看到未来的趋势——LED照明崛起之后,导光板材料的进步日新月异,今天我们拿到的导光板,透射与柔光效率或许比LCD扩散板低5%,半年之后等我们的‘初心2’定型量产时,说不定就有更新一代的物料可以使用了。而光源部分其实也是同样的道