按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
//。zika。co。at/kino/filme/willy/willy。html和http://。cdaccess。/html/pc/freewill。htm。
76、RowanGibsonRethingkingtheFuture:RethinkingBusiness,Princiles,petition,Control,Leadership,MarketsandtheWorld。
77、《变革的力量》,华夏出版社(1997)。
78、约翰。科特《新规则──后工业化社会制胜的策略》华夏出版社(1997)
79、《世界经理人文摘》80、京华企业咨询公司《管理圣人》P92…P93。
81、WilliamR。Pape《遥控管理》,《世界经理人文摘》1997年3月号。
82、麦达利《比尔·盖茨传》。
83、阿罗《信息经济学》
84、JoesphBalley,LeeMcKnight,PaulBosco:THANSACTINCASTS,PRODUCTIONCOSTS,ANDWORKEXTERNALITIES
译名对照表
1…800…Flowers〃1…800…鲜花〃(网址)
AcademyAwards奥斯卡奖
AcerMall宏棋商场
AndersenConsulting安德森咨询(公司)
ATM自动取款机
BargainFinder〃议价搜寻器”
BigBookInc。大书公司
BjornAndersen安德森
BobWallace鲍比·华莱士
BoozAllen&;Hamilton布斯阿兰和哈米尔顿(公司)
BusinessReseachGroup商务研究集团
Bussinessprocessreengineering,BPR企业流程重组
BussinessTransformation,BT企业转型
Cadence
信息速度!
信息经济学呀,你是多么可怜。信息经济都发展得这么热闹了,你连个对信息速度的度量概念都没有。我为你脸红、发烧、害臊!趁经济学家们还刚学怎么拨号上网,选1按F7的时候,趁刚上网的经济学家还在网上直晕菜的时候,我先比照货币经济学替你们描个”信息公式〃的红模子,供你们不晕菜了再来修理。咱们设信息量为B(B者,Bit也,行吗?),信息量就不用解释了吧,你们都被我叫成〃信息数量说〃了,还能不知道信息量是什么吗?然后,设信息速度为H(H者,Hz'赫兹'是也,不满意是吗,没办法,谁叫你们没预先准备好这么个概念符号呢?)〃信息速度〃H这个概念可能让人看着眼晕,我得解释一下:
信息速度原始的技术意义是指〃每秒处理的比特〃这个比率。也可以叫做〃信息速率”(InformationRate)。在经济学上最基本的意义,是指单位时间处理的信息量。它好比费雪式中的货币流速V。正如货币流速V可以被解释为〃货币价格〃一样,信息速率的转义就是“信息价格〃正如货币经济学中,〃货币价格〃一词不是指货币所买东西(实物)的价格,而是指〃价格水平〃一样,信息价格也不是指信息产品价格,而是指信息的价格水平,可以理解为信息处理的一般水平。H用来一般地描述信息处理的水平。此外,好象从货币价格V中可以派生出对立的准备金比率和利率一样,信息价格H也可以派生出对立的信息消费比率(Hc)
和信息增值比率(Hi)。
好了,这下子,雅虎和瀛海威们在经济学基础理论大厦中总算有了一个家。它们就是以H为主的〃H专业户〃。打个比方:信息量好比酒肉,当一定量〃酒肉穿肠过〃后,是长了膘呢,还是排泄掉,或长了多少膘,排泄了多少,这就要由H决定。光有排山倒海的信息量不行,还得有人对信息进行筛选处理,加工转化。信息增值服务的工作,就是让一定存量的信息,经过加工,转化增值为一定量的财富。H显示了这种处理水平的高低。
信息公式表述为:
Y=BH(Y为信息国民收入)
(实际计算时,H也许应是BIT/SEC的倒数,即SEC/BIT,是处理单位信息所花的时间。)即信息国民收入是一定量的信息经一定的转化速率处理后形成的社会财富,或者说是一定量的信息以一定的信息价格表示出来的集合。信息国民收入就是信息社会财富。现在看出来了吧,〃历史〃是〃大脚”“火球〃们和瀛海威们共同创造的。而不是信息量一家的功劳。信息财富(Y)是个流量,信息量(B)只是个存量,存量不可能自己就变成流量,信息量不可能不经处理自己变为财富。
信息速率H的作用就在于对信息增值进行度量。是信息增值的专用分析工具。我读过几十部自称〃信息经济学〃的文献,感到他们在表述信息增值的作用时十分笨拙和费劲,原因就在于现代经济学当初是为商品经济和货币经济准备的,根本没提供一个衡量信息增值的尺度。
什么,〃古人是怎么论述信息速率H的〃?据我推测,古人说,H是什么,他们不知道。昨天我上网用雅虎加上INFOSEEK一起,对InformationRate展开了一次全球〃大搜捕“,分别抓获1700个和2200个〃InformationRate分子〃。wωw奇書网十分可惜,几乎没一个跟〃本案”甚至经济学有关,都叫我〃无罪释放〃了。我只抓到一个最沾边的〃疑犯〃,现在咱们一块来审一审。
在网址//。sloan。salk。edu/~zador/MI5/处,有一本AnthonyZador的神经动力学专著《穿过神经元刺激的信息》(InformationthroughaSpikingNeuron)。作者的主要观点认为:信息速率是刺激间距(ISIs)分布的简单函数,是每一单位刺激的次数。用H(T)来精确表述信息速率。
(informationrateissimplytheentropyoftheISIdistribution,timesthespikerate。H(T)thusprovidesanexactexpressionfortheinformationrate。)谢天谢地,他也用H表示信息速率。虽然我读了这本书的好几章,也没弄明白〃神经元〃是怎么回事,但光一个H,就让我顿时有了一种找到同案犯的感觉。一高兴,我从网上〃宕〃了一幅画给你看:这是作者在〃无噪音信号的信息速率〃(Informationratesfornoiselesssignals)
一章中的实验结果图。你看不明白,我也看不明白。但请你注意,图中坐标采用的是bite/second和Hz。当图中的线接触X轴时,作者说信息速率为0(Theinformationrategoesto0),这从侧面证明他所说的信息率是用bite/second表述的。现在你知道〃信息速率〃这个提法不是我的瞎胡闹了吧?我不知道我是否已经满足了考证爱好者的好奇心。咱们转入正题。
申农和阿罗错在哪里
我们回过头来看〃信息数量说〃公式存在的问题。对于信息量,根据申农的公式:
信息量的单位是比特,一比特的自信息量就是两个不相容的等可能事件发生时所提供的信息量。H(x)又被称为申农信息熵。
肯尼思·阿罗把信息量表述为:
阿罗这个信息量公式与申农的公式从形式上看是一回事。只不过阿罗是从经济的角度解释公式,从而使它成为一个经济学公式。
阿罗的解释是:容量为H的信道能够以任意小的误差传递有关事件状态的信息。人们把某一给定信道的价值定义为拥有和没有信道时能达到的最大效用之间的差额。这里问题就来了,〃任意小的误差〃意味着信息量可以不受其它尺度(说穿了,就是信息速率)的调节,这就等于暗含了信息速率不变的假定;其次它隐含了信息收入流量直接决定于信息存量。
把它换成我们的信息公式语言,就等于说Y=BH,但限死H=1。这不正是典型的信息数量说吗?来自信源的一定量信息可以客观决定的,但不同的主体接受同一信息完全可能产生不同的收益,而且同一主体在不同条件下接受同一信息有可能获得不同的收益。阿罗假设的信息对人人产生相同效果的信息量公式是脱离实际的。信息数量说为了建立信息收益和信息量的直接联系,就必须有意无意地假定信息速率不变。这和当年货币数量说为了建立货币收入与货币量的直接联系必须证明货币流速稳定是一个道理。他们是怎么做到这一点的呢?
阿罗在构造信息量公式时,已经注意到一个问题,那就是信道噪声现象。信道噪声是从信源信息角度提出来的概念,是指信源信息在信道中所受到的干扰。它使信源系统的信息到达收信系统时发生失真。其实站在中立的立场上看,噪声也是一种信息,它和信源信息是平等的。而从我们的角度看,阿罗的〃噪声〃恐怕把一些比信源信息更高级的信息都包括了。比如,不同主体对同一信源信息的选择、加工和改造,如瀛海威这样的服务商对信息毛坯的预处理,必然构成对信源信息的〃干扰〃,只有被干扰者才视之为噪声,而从信息最终受益者来看,这种所谓〃噪声〃是一种信息增值。信息数量说是站在客体信息角度考虑问题,按这种思路,感兴趣的必然是如何排除(包括ISP和信息最终用户在内的)一切干扰,寻找信息存量的流量效果。其代价和缺陷必然是,排除了信息过程中的机会收益。在这种思想指导下的技术操作是,以对信道噪声的处理代替对信息速率的分析,通过把一切主体反应打入噪声之列,再把噪声平均概率化──目的是把不同主体对同一信源客体信息的不同反应标准化,使之显得像是只有一种反应(类似设H=1!─然后把它彻底排除出去。阿罗就是这样干的。申农熵度量方法主要适于信源信息分析,它根本不适合象互联网网上交互性这样强的信息现实和网络增值的大趋势。用它来量度信源信息对人的作用效果,由于主体在这里是黑箱,必然得不出唯一而确定的结论。阿罗采用申农的方法,自然也会具有同样的局限性。
从技术角度讲,申农熵的方法主要适用于有限概率空间,用它来量度信源信号的不确定性是客观的,但超出这个范围用来量度信息的综合过程就力不从心了。阿罗自己也承认,离散选择从来都不便于经济分析;对于对数效用函数来说,最优决策不包括机会成本。这种方法上的局限同认识上的局限正好是相适应的。
阿罗的信息量公式在有限范围内还是可用的,那就是明确信息速率不变这个限制。
但是这种类似于货币数量说费雪和庇古的方法,只能使它处理特例,即作为Y=BH在H=1的特例情况下应用,而不能扩大适用范围。但现在的情况恰恰是信息数量论被推广到一切信息领域。人们在申农和阿罗的权威面前失去了自己的想象力,不加分析地拿来作为构筑自己体系的基础。直到楼已盖得很高,才发现基础不完善,又找不出问题所在。这就是信息经济学普遍面临的困境。因为信息数量说自己并不能发现自己只能处理特例。(不放在Y=BH公式中考察,就不可能一目了然地看到阿罗公式的局限性。)
而这个问题又到了不能不解决的时候了。信息数量说虽然在工业社会向信息社会转型阶段,对推动解决信息量的匮乏起到了进步作用,但它现在在互联网上信息量爆炸的时代,已成了不折不扣的绊脚石。因为信息数量说对政策指导作用的有害方面已开始显露出来。若完全按它来指导政策,那将导致互联网上的灾难。如果我们仍然认为信息数量是信息财富的唯一来源,信息增值服务只是徒增噪音,那么互联网马上将变成一个信息拥挤不堪又买不到东西的聊天农贸市场;ISP除了接入服务,别的发展应一概打压,瀛海威们只好向隅哭泣。这是多么可怕的一幅画面!
幸好,我们还有另一种选择。
直接经济的理论基础
在信息公式Y=