按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
基于几个这种输入的预测会比输入过多或相关情况下的准确性高。因此,输入变量过多虽然可以增加自信程度,但却会降低预测的准确性。而人们在预测时所抱持的信心常会超出他们的能力范围。
误解回归性。假设让一群儿童做两套等效的能力测试题。如果你挑选出了在其中一套能力测试题中表现最好的10个人,那么他们在另一套测试中的表现通常会让你失望。相反,如果你挑选的是在其中一套能力测试中表现最差的10个人,你就会发现,他们在下一次测试中平均都比前一次测试表现得好。一般来说,假设变量X和Y有相同的分布。如果你挑选的X的平均分数偏离了X的均值K个单位,那么,Y的平均分通常偏离Y的均值的程度就会少于K个单位。这些观察表明了一个普遍的现象,即回归平均值现象。这个现象是高尔顿在100年前首次证明的。
在正常的生命过程中,你会遇到许多回归平均值的例子。例如,在比较父亲与儿子的身高,丈夫与妻子的智力水平或是某个人连续测试的不同表现时。不过,人们没能对此现象产生正确的直觉。首先,人们不能预料一些肯定会发生回归平均值的情境。其次,当他们辨别出回归平均值的发生时,总会捏造出虚假的因果解释。有这样一个信念:预测结果应该最大程度代表输入信息,因此,结果变量的值也应与输入变量的值一样极端。我们提出,回归平均值的现象之所以难以掌握就是因为与上述信念不相容。
未能意识到回归平均值的重要性将会带来严重的后果。下面这个例子就说明了这一点:在一次关于飞行训练的讨论中,有经验的指导员注意到,若赞扬某位飞行员着陆非常平稳,该飞行员下一次着陆就会表现得糟糕;若某位飞行员着陆较差,该飞行员下一次着陆就会有很大进步。这些指导员总结道,口头表扬对学习是有害的,而口头批评却大有益处,这与广为接受的心理学定律相左。由于回归平均值的存在,这个结论是没有根据的。就像其他重复的测试一样,每次表现糟糕以后总会有进步,而表现优异以后又总会变得糟糕,即使指导员没有对学员的第一次表现给予任何回应。指导员形成了惩罚比奖赏更有效这个错误且有潜在危害的结论,因为他们正好在着陆表现优异后表扬了这些学员,在着陆表现糟糕后批评了这些学员。
因此,未能理解回归效应会导致人们高估惩罚的有效性,低估奖赏的有效性。无论是在社会交往中,还是在训练中,表现得好都会有奖赏,表现得差也都会有惩罚。因此,行为最有可能在惩罚之后得到改进,在奖赏之后变得更坏,这其实就是一种回归现象。其结果就是:人们碰巧因为惩罚他人得到了奖赏,因为奖赏他人得到了惩罚。然而,人们通常不会意识到这种偶然性。事实上,难以掌握回归性主要是因为奖赏与惩罚带来的结果非常明显,因此,这个领域的学者也没有注意到它。
可得性
有时候,人们会通过能想到例子或事件的容易程度来评估这类事的频率或概率。例如,你可能会通过回忆自己认识的人中有多少位是心脏病患者来估测中年人患心脏病的风险。同样,你也可能会通过想象某个企业可能会遇到的各种难题来估测其倒闭的概率。这种判断启发式被称为可得性。可得性对于评估频率或概率来说,是个很有用的线索,因为相比频率较低的类别的例子来说,我们可以更好、更快地得到频率较高的类别的例子。然而,可得性并不受频率和概率的影响。因此,依赖于可得性会导致预测的偏见。我接下来将说明其中的一些偏见。
因例子的可提取性导致的偏见。当用某个类别的例子的可得性来判断该类别的大小时,例子很容易提取的类别会比频率相同但例子较难想到的类别显得更大。在证明此效应的基本研究中,受试者听到了一串知名人士的名字,男女均有。接着,他们需要判断这串名字中男性是否比女性多。不同组的受试者听到的名字并不相同。在一些名单中,男性更有名;而在另外一些名单中,女性则更有名。受试者都错误地判断了所有名单的类别(性别)。他们的判断显示,名人更多的类别,其数目也越大。除了熟悉度以外,显著程度也会影响例子的可提取性。例如,看见房子失火对这类事件主观概率的影响可能会比在报纸上读到失火这件事的影响要大。另外,最近发生的事有可能会比之前发生的事更容易获得。对于交通事故的主观概率会在见到一辆翻倒在路边的车后暂时升高,这很平常。
因搜索集合的有效性导致的偏见。假设从某个英文文本中随机抽取一个词(含有3个或更多字母的词)。这个词更有可能是以r开头还是以r作为第三个字母?人们在回答这个问题时,会回忆首字母为r的单词(例如road)以及第三个字母为r的单词(例如car),然后通过想到这两个词的容易程度来评估相对频率。因为从记忆中搜寻单词的首字母要比搜寻其第三个字母更为容易,所以大多数人都判断以某个辅音开头的单词要比第三个字母为该辅音的单词多。但实际上,例如r或k的辅音字母,出现在第三个字母的频率都要比出现在开头的频率高。
不同的任务会引发不同的搜索集合。例如,假设你被要求评估抽象词(比如想法、爱)和具体词(比如门、水)出现在书面英语中的频率。回答这个问题自然而然的方法就是搜寻这些词可能出现的情境。联想起提到抽象概念(爱情故事中的爱情)的情境似乎要比联想起提到具体词(例如门)的情境更为容易。如果用单词出现情境的可得性来判断这些单词的频率,抽象词就会多于具体词。这一偏见在最近的研究中已被发现,此研究表明,判断出抽象词的出现频率比具体词的出现频率高很多,与客观频率相等。相较于具体词,抽象词还会出现在更多的语境中。
想象力的偏见。有时,你需要评估某类事件发生的频率,这类事件的实例没有储存在你的大脑中,但你可以通过一定的规则构建一些实例。在这样的情况下,你通常会构建几个实例并通过构建这些实例的容易程度来评估其频率或概率。然而,构建实例的容易程度并不总能反映出真实的频率,这种评估模式很容易导致偏见。下面这个例子将会说明这一点:请考虑一个10个人的团体,他们想组成一个有K个成员的委员会(2小于或等于k小于或等于8)。他们可以组成多少个不同的且有K个成员的委员会?这个问题的正确答案是二项式系数(10k),当K等于5时,达到其最大值252。这明确表明了,K个成员的委员会数量等于(10减k)个成员的委员会数量,因为任何有K个成员的委员会界定了一个独有的(10减k)个非成员的团体。
若想不通过计算就回答这个问题,则需要在心里构建有K个成员的委员会,然后通过构建这些委员会的容易程度来评估它们的数量。人数较少的委员会(比如只有两人的委员会)会比人数较多的委员会(比如有8人的委员会)更容易构建。因此,如果通过想象力或是构建的可得性来评估频率的话,规模小的委员会似乎就会比规模大的委员会的数量更多,这与对称的钟形函数正好相反。事实上,在要求天真的受试者评估规模不同的委员会的数目时,他们的估计是委员会规模的单调递减函数。例如,他们评估的有两个成员的委员会的中值是70,有8个成员的委员会的中值是20(正确答案应该是两种情况下都是45)。
在真实情境中,想象力对概率的评估起着重要的作用。例如,通过想象某次探险中无法应对的意外事件来评估这次探险的风险。如果能想到许多这样生动的意外事件,这次探险就会显得尤其危险,尽管想到这些灾难的容易程度并不能反映出它们实际发生的可能性。相反,如果没能想到某些可能的危险,那将要承担的风险就会被低估。
相关性错觉。L·J·查普曼与J·P·查普曼曾描述过一种有趣的偏见,这种偏见是在判断两个同时发生的事件的频率时产生的。他们向受试者提供了几个假设的精神病患者的信息。信息包括每位病人的临床诊断数据和一幅由病人画的人像画。然后,受试者需评估每个诊断(例如妄想症或疑心病)以及人像画中不同特征(例如奇怪的眼睛)的频率。受试者明显高估了自然的联想物同时发生的频率,例如疑心病和奇怪的眼睛的频率。这种效应被称为相关性错觉(illusory correlation)。受试者错误地判断了得到的数据,“重新发现”了许多普遍但无根据的临床知识,这些临床知识就涉及人像画测试的相关解释。相关性错觉效应极度抗拒相互矛盾的数据。即使在症状与诊断呈负相关的情况下,相关性错觉仍然存在,它使受试者不能察觉到真正存在的关系。
可得性为相关性错觉效应提供了自然的解释。根据两个事件相互关联的强度,可以判断出它们同时发生的频率。当两个事件关联性强的时候,你可能会认为它们经常同时发生。因此,强关联常被判断为经常同时发生。根据这个观点,疑心病与奇怪的眼睛的关联性错觉就是由疑心病常会与奇怪的眼睛而引起的,而不是因与人体其他部位相联系而引起的。
从我们的人生经历可知,总的来说,相比发生频率低的例子,我们更能又好又快地回忆起发生频率高的例子,更容易想到可能发生的事,而不是发生概率不高的事。当事件频繁地同时发生时,这两个事件之间的关联性会得以增强。所以,人们可以自由使用可得性启发式的程序,具体是通过提取、构建和联想等相关大脑运作的容易程度来估测类别的数量、事件的可能性或是事件同时发生的频率。然而,前面的例子已经说明,这个有价值的估测过程会导致系统性错误。
判断与锚定
在许多情况下,人们都会通过初始值来确定最后的答案。初始值或起始点,可能是从问题形成之时得到的提示,也可能是在稍微计算之后得到的结果。但无论是前者还是后者,其调整都不会太过充分。不同的起始点会产生不同的估测,都会偏向于初始值。我们将这个现象称为锚定。
不充分的判断。在某个证明锚定效应的实验中,受试者需要估测不同的数值,并以百分比来进行评定(例如非洲国家在所有联合国成员国中所占席位的百分比)。在猜测每一个数值的时候,受试者面前一个范围为0~100的幸运转盘都会旋转一次。受试者首先需要说明,转盘指针指向的数值比起实际值来说是高了还是低了,然后,再将转盘的指针拨向自己估计的值。不同的小组面对的是不同的初始数字,而这些随机的数值对估计有着巨大的影响。以非洲国家占联合国成员国的百分比为例,转盘指针指向10的小组估测的中值是25,而指针指向65的小组估测的中值是45,其中,10和65就被受试者视为起始点。对于估计要精确的要求也并没能削弱锚定效应的影响。
锚定不只是在受试者被给予相关起始点的情况下发生,当受试者依赖于未完成的计算结果进行估测时,这种情形也会发生。关于直觉性数值估计的研究就说明了这一效应:在黑板上写出一些算式,让两组高